磁芯損耗是磁芯材料內(nèi)交替磁場引致的結(jié)果。某一種材料所產(chǎn)生的損耗,是操作頻率與總磁通擺幅(ΔB)的函數(shù)。磁芯損耗是由磁芯材料的磁滯、渦流和剩余損耗引起的。 每個材料頁面都有顯示每種材料的磁芯損耗曲線及與曲線配合的公式。這些資料是用卡拉克-希斯瓦特計(Clarke-Hesse V-A-W Meter)所測得的正弦波磁芯損耗算出的,這些曲線的典型公差為±15%。各種頻率的磁芯損耗作為一個AC磁通密度峰值的函數(shù)時,以每立方厘米多少毫瓦特(mW/cm3)顯示。
|
因此,如果頻率 (F) 從 100 kHz 升至 500 kHz,則磁芯損耗便為原來的 8 倍。100 KHz時,大多數(shù)損耗存在于銅線中,同時利用全直流額定電流是可能的。更高頻率時,磁芯損耗變大。由于總?cè)菰S損耗由磁芯損耗與銅線損耗之和決定,因此銅線損耗必須在磁芯損耗上升時降低。這種情況一直持續(xù)到各損耗均相等。最佳情況是,在高頻率下?lián)p耗穩(wěn)定保持相等,并允許從磁結(jié)構(gòu)獲得最大輸出電流。
1 0.5 MHz以上,磁芯損耗大大降低了有效傳導(dǎo)損耗。1.3 MHz以下時,電感與開關(guān)頻率成反比關(guān)系。電感在1.3 MHz 附近達(dá)到最小值。該頻率以上,則必須升高電感來限制磁芯通量,從而將磁芯損耗控制在總損耗的 50%。該電感的額定電流也同時被計算出來。低頻率時,磁芯損耗并不大,額定電流由繞組的功率損耗決定。下列方程式中,匝數(shù)與頻率平方根的倒數(shù)成正比,因此頻率升高 2 倍(電感降低一半)得到 0.707 匝數(shù)。L = μ × A × N2/lm 這種情況會以兩種方式影響繞組電阻。匝數(shù)減少 30%,而每一匝的可用面積卻增加了41%。由于繞組電阻與匝數(shù)/匝面積相關(guān),因此電阻隨頻率上升而線性下降,例如:在本例中電阻下降 2 倍。較高頻率時,磁芯損耗開始限制容許銅線損耗,直到達(dá)到它們相等的點為止。在這一點上,通過增加更多匝數(shù)以及升高繞組電阻,使電感上升來降低通量。這樣,電感額定電流減少。因此,從電感尺寸角度來說獲得了最佳頻率。
總之,增加開關(guān)頻率會縮小磁芯尺寸的看法是正確的,但僅限于磁芯損耗和交流 繞組損耗等于銅線損耗的點上。過了這個點,磁芯尺寸實際上會增加。另外,設(shè)計人員需要注意的是,在有許多高開關(guān)頻率產(chǎn)品可供選擇的今天,一些相應(yīng)的應(yīng)用手冊中并沒有清楚地注明過高磁芯損耗存在的一些潛在問題。